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Generating the Model

Suppose that we want to model the time evolution of some
natural or social system.

Often this is done by devising a rule according to which the
state of the system at a time t depends on the state of the
system at an earlier time.

infinitesimal earlier time −→ differential equations

continuous dynamical system:

u̇(t) = f(u(t)), u(0) = u0, n ∈ R
+, R, u ∈ R

n (1)
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Analyzing the Model

If f is a linear function of u, the system can be solved exactly.

In most modeling situations, however, f is nonlinear and in
general analytic solutions are not available.
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Analyzing the Model

So what can we do?

1 Use qualitative analytic methods (e.g. centre manifold theory,
normal form theory)

2 Use computers and numerical methods

Both approaches have limitations. . .
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Limitations of Computation

Two important limitations of using computation:

1 computer representation of real numbers (floating point
numbers) is finite and discrete

this introduces roundoff and truncation error

2 the continuous evolution of (1) is discretized

this introduces discretization error

u(t + ∆t) = u(t) +

∫

t+∆t

t

f(u)dt
e.g.

−→ Un+1 = Un +
s

∑

i=1

aif(Yi)∆t
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Discretization Error

So, not only do we have the issue of floating point error, we also
have the issue of whether interpolating the discretized system
produces behaviour sufficiently close to the behaviour of the model
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Discretization Error

Consider a very simple numerical method (Euler method):

Suppose our model is the logistic equation

u̇ = f(u) = u − u2, u(0) = u0,

which has solution

u(t) = u0 +

∫

t

0

f(u)dt = u0 +

∫

t

0

(u − u2)dt.

Then with the very simple estimation of the integral over a
time step ∆t as f(u(t))∆t we obtain

Un+1 = Un + (Un − U2
n)∆t,

which contains the logistic map.



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 0.1?



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 0.1?



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 1?



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 2?



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 3?



Modeling Convergence and Stability Numerical Methods as Dynamical Systems Conclusion

Discretization Error

How does the Euler method do for ∆t = 3.6?
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Discretization Error

Of course this example is artificial for two reasons:

1 In practice we use more sophisticated numerical methods; and

2 In practice we use very small time steps for accuracy.

But, it shows that even though the solution of the model may be
smooth, the solution of the numerics need not be. The numerics
can even be chaotic!
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Keeping Watch on Error

Since we want the numerics to accurately reflect the dynamics, so
that we can use the numerics to understand the system being
modeled, we must keep a careful watch on the various sources of
error.
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Controlling the Error

In many modeling situations, ensuring that

‖u(t) − U(t)‖, t ∈ [0, T ]

is small is one’s main concern, since one requires accurate
quantitative results in the near term (short time periods).

The classical error theory for numerical methods formulates
this as a convergence question.
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Classical Finite-Time Convergence

The error committed over one iteration of the numerical
method starting at U0 = U is called the truncation error,
which may be denoted

‖T (U ;∆t)‖.

For example, for Runge-Kutta methods

‖T (U ;∆t)‖ = u(∆t) − U1.
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Classical Finite-Time Convergence

The questions asked, then, are:

1 does ‖T (U ;∆t)‖ → 0 as ∆t → 0?

2 and if so, how fast?
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Classical Finite-Time Convergence

To phrase the sort of result that is proved, we need the notion of
the order of a numerical method:

Roughly speaking, a numerical method has order r if for all
sufficiently smooth functions f(u) and all initial values U

‖T (U ;∆t)‖ = O(∆tr+1) as ∆t → 0.
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Classical Finite-Time Convergence

Defining the global error en at time t = n∆t to be

en = ‖u(n∆t) − Un‖

then an example of a convergence result is (for Runge-Kutta
methods of order r, with a Lipschitz assumption on f):

there is a ∆tc > 0 such that for any ∆t ∈ (0,∆tc) and
n∆t ∈ [0, T ] the global error satisfies

en ≤ K∆tr(eLT − 1).

But, we see that the bound grows exponentially in time and
goes to infinity as T → ∞. So what do we do if we are
interested in long-time behaviour?
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Why Long Term Error?

What else besides near term error do we need to worry about?

Much of the time we are interested in understanding the
stability properties of the invariant sets (equilibrium points,
periodic solutions, chaotic attractors, etc.) of our model
dynamical system.

Also, often our model contains parameters, which we may
assume are constant, but may actually vary over longer time
periods, or may just be subject to measurement or modeling
error, so really we are dealing with a system

u̇(t) = f(u, µ), u(0) = u0, n ∈ R
+, R, u ∈ R

n, µ ∈ R
m

(2)
so we need to worry about bifurcations.
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More Discretization Concerns

This presents us with a whole host of other discretization concerns.

How do we know whether the invariant sets and bifurcations
of the discretized system reflect or correspond to the invariant
sets of our original model?
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More Discretization Concerns

Consider a simple linear example:

u̇ = Au, u(0) = U,A =

(

−µ 0
0 −µ/2

)

, µ > 1.

The matrix A has eigenvalues λ = −µ,−µ/2 and so the
origin is globally asymptotically stable.

Suppose we discretize using the Euler method, then

Un+1 = (I + ∆tA)Un

Clearly U = 0 is an equilibrium point, but it is only stable
provided that the modulus of the eigenvalues of I + ∆tA are
less than 1, i.e. if |1 − µ∆t| < 1.
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Convergence and Stability

In terms of understanding the limits of numerics there are two
main kinds of question that arise:

1 Convergence: what can be said about the large n behaviour of
Un and the large t behaviour of u(t) in the limit ∆t → 0?

2 Stability: for what sort of restrictions on the time step do
numerical methods replicate the large-time dynamical features
of the dynamical system?

How do we address these?
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Treating Numerical Methods as Dynamical Systems

One approach is to treat the numerical methods as discrete
dynamical systems so that the theory of dynamical systems can be
brought to bear on the problem.
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Some Definitions

To get a taste for what this involves we need a few more
definitions. . .
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Evolution Semigroups

A (finite-dimensional) dynamical system can be characterized as a
map from vectors to vectors.

For a discrete dynamical system the map is

Sn: R
n → R

n, U0 7→ Un = SnU0.

For a continuous dynamical system the map is

S(t): R
n → R

n, u0 7→ u(t) = S(t)u0.

The maps (Sn and S(t)) are called evolution semigroups.
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Invariant Sets

With the notion of a semigroup we may give a precise definition of
invariant set:

An invariant set of a dynamical system is a set E ⊆ R
n such

that SnE = E or S(t)E = E.

We may see that equilibrium points and periodic solutions are
invariant sets since they map onto themselves at time evolves.
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ω-limit Sets

In particular, the invariant sets we are interested in are the
ones that solutions (or sets of solutions) converge to as
n, t → ∞. These are ω-limit sets.

Thus, the kind of questions we want to ask is do the ω-limit
sets of our numerical method correspond to the ω-limit sets of
the dynamical system.
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for the numerics.
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Treating Numerics as Dynamics

A fruitful way to address this is to show that the semigroup
S(t) for our dynamical system ((1) or (2)) when discretized
yields a semigroup Sn

∆t
for the numerics.

When it does, then it is possible to prove results concerning
the relationship between the invariant sets of S(t) and Sn

∆t
.
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Treating Numerics as Dynamics

The kinds of things that can be proved for particular classes of
numerical methods are:

conditions under which structural properties, e.g. dissipativity
or conservativeness, of the vector field f are preserved.

conditions for convergence of the invariant sets of S(t) and
Sn

∆t
, e.g. equilibriua, periodic solutions, invariant manifolds,

etc.
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Treating Numerics as Dynamics

Other interesting things that can be proved are results concerning:

the preservation of arbitrary attracting sets under
discretization. This includes the case of chaotic attractors.

the preservation of dynamical invariants, e.g. a Hamilitonian,
phase volume, etc., under discretization. This ensures stable
numerics for computing integrable systems.
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Simple Examples of Results

One kind of stability problem for numerical methods is the
introduction of spurious fixed points, i.e. fixed points of Sn

∆t
that

are not fixed points of S(t). A couple of simple results that can be
proved for Runge-Kutta methods are:

any fixed point of S(t) is a fixed point of Sn

∆t
; but

specific conditions for critical values of ∆t where spurious
fixed points bifurcate from equilibria.
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Limitations of Numerics

Take home message:

it is important to be aware of the kinds of distortion that
discretization can produce when using numerics to study
dynamical systems;

treating numerics as discrete dynamical systems enables one
to determine how to design numerical methods that stably
compute continuous dynamical systems of various kinds.
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So What About the Project?

For the project:

A brief survey of some of the kinds of distortion produced by
discretization;

Simulations to illustrate the results of theorems;

Discretization of a model of a physical system.
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Thanks!

Thank You!
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