Dynamical Numerics for Numerical Dynamics

Robert H. C. Moir

The University of Western Ontario Dept. of Applied Mathematics

April 9, 2010

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000	000000000	00000000	0000

2 Convergence and Stability

3 Numerical Methods as Dynamical Systems

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
• 0 00000000			
Generating the Mod	el		

• Suppose that we want to model the time evolution of some natural or social system.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
• 0 00000000			
Generating the Mode	l		

- Suppose that we want to model the time evolution of some natural or social system.
- Often this is done by devising a rule according to which the state of the system at a time t depends on the state of the system at an earlier time.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
• 0 00000000			
Generating the Mode	l		

- Suppose that we want to model the time evolution of some natural or social system.
- Often this is done by devising a rule according to which the state of the system at a time t depends on the state of the system at an earlier time.

finite earlier time \longrightarrow difference equations

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
• 0 00000000			
Generating the Mode	l		

- Suppose that we want to model the time evolution of some natural or social system.
- Often this is done by devising a rule according to which the state of the system at a time t depends on the state of the system at an earlier time.

finite earlier time \longrightarrow difference equations

discrete dynamical system:

 $U_{n+1} = f(U_n), \quad U_0 = U, \quad n \in \mathbb{N}, \mathbb{Z}, u \in \mathbb{R}^n$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
Generating the Mode	I		

- Suppose that we want to model the time evolution of some natural or social system.
- Often this is done by devising a rule according to which the state of the system at a time t depends on the state of the system at an earlier time.

infinitesimal earlier time \longrightarrow differential equations

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Generating the Model			

- Suppose that we want to model the time evolution of some natural or social system.
- Often this is done by devising a rule according to which the state of the system at a time t depends on the state of the system at an earlier time.

infinitesimal earlier time \longrightarrow differential equations

continuous dynamical system:

 $\dot{u}(t) = f(u(t)), \quad u(0) = u_0, \quad n \in \mathbb{R}^+, \mathbb{R}, u \in \mathbb{R}^n$ (1)

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Analyzing the Model			

• If f is a linear function of u, the system can be solved exactly.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000000000000000000000000000000000			
Analyzing the Model			

- If f is a linear function of u, the system can be solved exactly.
- In most modeling situations, however, f is nonlinear and in general analytic solutions are not available.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Analyzing the Model			

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Analyzing the Model			

 Use qualitative analytic methods (*e.g.* centre manifold theory, normal form theory)

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Analyzing the Model			

- Use qualitative analytic methods (*e.g.* centre manifold theory, normal form theory)
- ② Use computers and numerical methods

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Analyzing the Model			

- Use qualitative analytic methods (*e.g.* centre manifold theory, normal form theory)
- ② Use computers and numerical methods

Both approaches have limitations...

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Comp	utation		

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Comp	utation		

 computer representation of real numbers (floating point numbers) is finite and discrete

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Comp	utation		

- computer representation of real numbers (floating point numbers) is finite and discrete
 - this introduces roundoff and truncation error

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Compu	itation		

- computer representation of real numbers (floating point numbers) is finite and discrete
 - this introduces roundoff and truncation error
- 2 the continuous evolution of (1) is discretized

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Comp	utation		

- computer representation of real numbers (floating point numbers) is finite and discrete
 - this introduces roundoff and truncation error
- 2 the continuous evolution of (1) is discretized

$$u(t + \Delta t) = u(t) + \int_{t}^{t + \Delta t} f(u)dt$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
000000000			
Limitations of Comp	utation		

- computer representation of real numbers (floating point numbers) is finite and discrete
 - this introduces roundoff and truncation error
- 2 the continuous evolution of (1) is discretized

$$u(t + \Delta t) = u(t) + \int_{t}^{t + \Delta t} f(u)dt \xrightarrow{\text{e.g.}} U_{n+1} = U_n + \sum_{i=1}^{s} a_i f(Y_i)\Delta t$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Limitations of Comp	utation		

- computer representation of real numbers (floating point numbers) is finite and discrete
 - this introduces roundoff and truncation error
- 2 the continuous evolution of (1) is discretized
 - this introduces discretization error

$$u(t + \Delta t) = u(t) + \int_{t}^{t + \Delta t} f(u)dt \xrightarrow{\text{e.g.}} U_{n+1} = U_n + \sum_{i=1}^{s} a_i f(Y_i) \Delta t$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

So, not only do we have the issue of floating point error, we also have the issue of whether interpolating the discretized system produces behaviour sufficiently close to the behaviour of the model

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• Suppose our model is the logistic equation

$$\dot{u} = f(u) = u - u^2, \quad u(0) = u_0,$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• Suppose our model is the logistic equation

$$\dot{u} = f(u) = u - u^2, \quad u(0) = u_0,$$

• which has solution

$$u(t) = u_0 + \int_0^t f(u)dt = u_0 + \int_0^t (u - u^2)dt.$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• Suppose our model is the logistic equation

$$\dot{u} = f(u) = u - u^2, \quad u(0) = u_0,$$

which has solution

$$u(t) = u_0 + \int_0^t f(u)dt = u_0 + \int_0^t (u - u^2)dt.$$

• Then with the very simple estimation of the integral over a time step Δt as $f(u(t))\Delta t$ we obtain

$$U_{n+1} = U_n + (U_n - U_n^2)\Delta t,$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• Suppose our model is the logistic equation

$$\dot{u} = f(u) = u - u^2, \quad u(0) = u_0,$$

• which has solution

$$u(t) = u_0 + \int_0^t f(u)dt = u_0 + \int_0^t (u - u^2)dt.$$

• Then with the very simple estimation of the integral over a time step Δt as $f(u(t))\Delta t$ we obtain

$$U_{n+1} = U_n + (U_n - U_n^2)\Delta t,$$

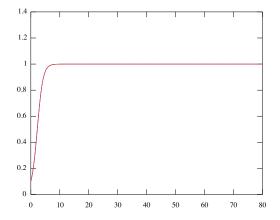
which contains the logistic map.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 0.1$?

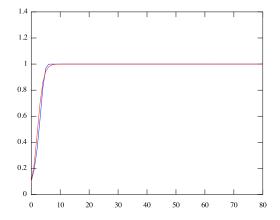
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 0.1$?



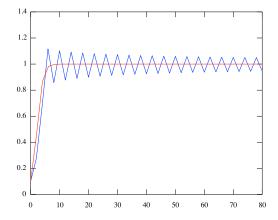
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 1$?



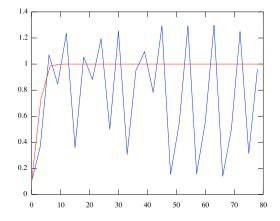
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 2$?



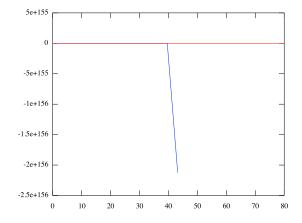
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 3$?



Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

• How does the Euler method do for $\Delta t = 3.6$?



Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
00000000000			
Discretization Error			

Of course this example is artificial for two reasons:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
00000000000			
Discretization Error			

Of course this example is artificial for two reasons:

In practice we use more sophisticated numerical methods;

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

Of course this example is artificial for two reasons:

- In practice we use more sophisticated numerical methods; and
- In practice we use very small time steps for accuracy.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
0000000000			
Discretization Error			

Of course this example is artificial for two reasons:

- In practice we use more sophisticated numerical methods; and
- In practice we use very small time steps for accuracy.

But, it shows that even though the solution of the model may be smooth, the solution of the numerics need not be.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
00000000000			
Discretization Error			

Of course this example is artificial for two reasons:

- In practice we use more sophisticated numerical methods; and
- In practice we use very small time steps for accuracy.

But, it shows that even though the solution of the model may be smooth, the solution of the numerics need not be. The numerics can even be chaotic!

Keeping Watch on I	Error		
000000000			
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion

Since we want the numerics to accurately reflect the dynamics, so that we can use the numerics to understand the system being modeled, we must keep a careful watch on the various sources of error.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Controlling the Error			

• In many modeling situations, ensuring that

 $||u(t) - U(t)||, \quad t \in [0, T]$

is small is one's main concern, since one requires accurate quantitative results in the near term (short time periods).

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Controlling the Error			

• In many modeling situations, ensuring that

 $||u(t) - U(t)||, \quad t \in [0, T]$

is small is one's main concern, since one requires accurate quantitative results in the near term (short time periods).

• The classical error theory for numerical methods formulates this as a *convergence* question.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Classical Finite-Tim	ne Convergence		

• The error committed over one iteration of the numerical method starting at $U_0 = U$ is called the *truncation error*, which may be denoted

 $\|T(U;\Delta t)\|.$

Modeling 0000000000	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion 0000
Classical Finite-Time	Convergence		

• The error committed over one iteration of the numerical method starting at $U_0 = U$ is called the *truncation error*, which may be denoted

 $||T(U;\Delta t)||.$

• For example, for Runge-Kutta methods

 $||T(U;\Delta t)|| = u(\Delta t) - U_1.$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Classical Finite-Time	e Convergence		

The questions asked, then, are:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Classical Finite-Tim	e Convergence		

The questions asked, then, are:

• does
$$||T(U; \Delta t)|| \to 0$$
 as $\Delta t \to 0$?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	00000000		
Classical Finite-Tim	e Convergence		

The questions asked, then, are:

1 does
$$||T(U; \Delta t)|| \rightarrow 0$$
 as $\Delta t \rightarrow 0$?

and if so, how fast?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Classical Finite-Time	e Convergence		

To phrase the sort of result that is proved, we need the notion of the *order* of a numerical method:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Classical Finite-Time	Convergence		

To phrase the sort of result that is proved, we need the notion of the *order* of a numerical method:

• Roughly speaking, a numerical method has order r if for all sufficiently smooth functions f(u) and all initial values U

$$||T(U;\Delta t)|| = O(\Delta t^{r+1})$$
 as $\Delta t \to 0$.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Classical Finite-Time	e Convergence		

• Defining the global error e_n at time $t = n\Delta t$ to be

$$e_n = \|u(n\Delta t) - U_n\|$$

then an example of a convergence result is (for Runge-Kutta methods of order r, with a Lipschitz assumption on f):

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Classical Finite-Time	e Convergence		

• Defining the global error e_n at time $t = n\Delta t$ to be

$$e_n = \|u(n\Delta t) - U_n\|$$

then an example of a convergence result is (for Runge-Kutta methods of order r, with a Lipschitz assumption on f):

• there is a $\Delta t_c > 0$ such that for any $\Delta t \in (0, \Delta t_c)$ and $n\Delta t \in [0, T]$ the global error satisfies

$$e_n \le K\Delta t^r (e^{LT} - 1).$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Classical Finite-Tim	e Convergence		

• Defining the global error e_n at time $t=n\Delta t$ to be

$$e_n = \|u(n\Delta t) - U_n\|$$

then an example of a convergence result is (for Runge-Kutta methods of order r, with a Lipschitz assumption on f):

• there is a $\Delta t_c > 0$ such that for any $\Delta t \in (0, \Delta t_c)$ and $n\Delta t \in [0, T]$ the global error satisfies

$$e_n \le K\Delta t^r (e^{LT} - 1).$$

• But, we see that the bound grows exponentially in time and goes to infinity as $T \to \infty$. So what do we do if we are interested in long-time behaviour?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Why Long Term Erro	pr?		

What else besides near term error do we need to worry about?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Why Long Term Er	ror?		

What else besides near term error do we need to worry about?

• Much of the time we are interested in understanding the stability properties of the invariant sets (equilibrium points, periodic solutions, chaotic attractors, *etc.*) of our model dynamical system.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	000000000		
Why Long Term Erro	r?		

What else besides near term error do we need to worry about?

- Much of the time we are interested in understanding the stability properties of the invariant sets (equilibrium points, periodic solutions, chaotic attractors, *etc.*) of our model dynamical system.
- Also, often our model contains parameters, which we may assume are constant, but may actually vary over longer time periods, or may just be subject to measurement or modeling error, so really we are dealing with a system

 $\dot{u}(t) = f(u,\mu), \quad u(0) = u_0, \quad n \in \mathbb{R}^+, \mathbb{R}, u \in \mathbb{R}^n, \mu \in \mathbb{R}^m$ (2)

so we need to worry about bifurcations.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization	n Concerns		

This presents us with a whole host of other discretization concerns.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization	Concerns		

This presents us with a whole host of other discretization concerns.

• How do we know whether the invariant sets and bifurcations of the discretized system reflect or correspond to the invariant sets of our original model?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization (Concerns		

• Consider a simple linear example:

$$\dot{u} = Au, \quad u(0) = U, A = \begin{pmatrix} -\mu & 0\\ 0 & -\mu/2 \end{pmatrix}, \mu > 1.$$

The matrix A has eigenvalues $\lambda=-\mu,-\mu/2$ and so the origin is globally asymptotically stable.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization	Concerns		

• Consider a simple linear example:

$$\dot{u} = Au, \quad u(0) = U, A = \begin{pmatrix} -\mu & 0\\ 0 & -\mu/2 \end{pmatrix}, \mu > 1.$$

The matrix A has eigenvalues $\lambda=-\mu,-\mu/2$ and so the origin is globally asymptotically stable.

• Suppose we discretize using the Euler method, then

$$U_{n+1} = (I + \Delta tA)U_n$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization	Concerns		

• Consider a simple linear example:

$$\dot{u} = Au, \quad u(0) = U, A = \begin{pmatrix} -\mu & 0\\ 0 & -\mu/2 \end{pmatrix}, \mu > 1.$$

The matrix A has eigenvalues $\lambda=-\mu,-\mu/2$ and so the origin is globally asymptotically stable.

• Suppose we discretize using the Euler method, then

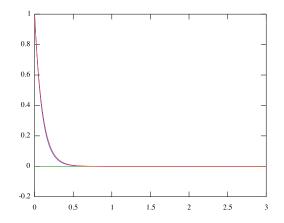
$$U_{n+1} = (I + \Delta tA)U_n$$

Clearly U = 0 is an equilibrium point, but it is only stable provided that the modulus of the eigenvalues of $I + \Delta tA$ are less than 1, *i.e.* if $|1 - \mu \Delta t| < 1$.

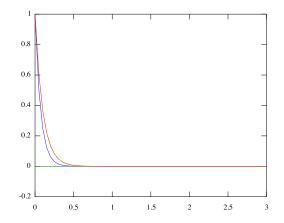
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
	0000000000		
More Discretization	Concerns		

• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 0.1/\mu$?

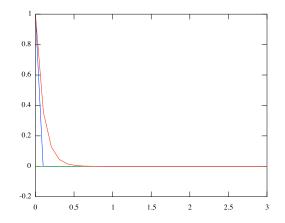
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 0.1/\mu$?



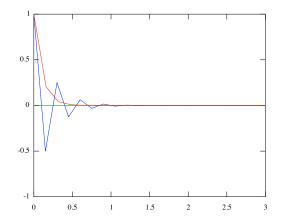
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 0.5/\mu$?



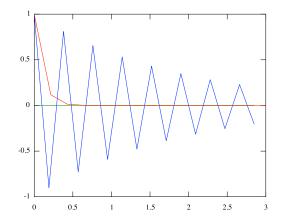
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 1/\mu$?



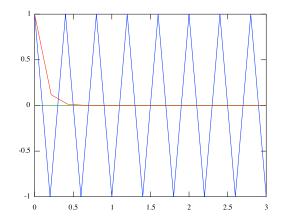
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 1.5/\mu$?



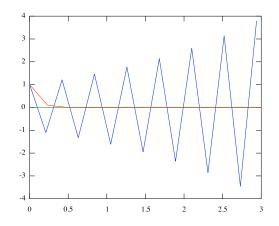
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 1.9/\mu$?



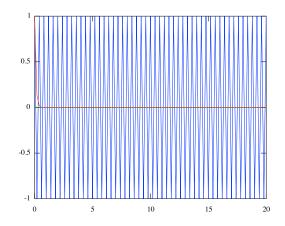
• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 2/\mu$?



• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 2.1/\mu$?



• Suppose that $\mu = 10$ and we let $U = (1,0)^T$. Then what happens for $\Delta t = 2/\mu$?



Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion			
	000000000					
Convergence and Stability						

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion			
	000000000					
Convergence and Stability						

• Convergence: what can be said about the large n behaviour of U_n and the large t behaviour of u(t) in the limit $\Delta t \to 0$?

Modeling 0000000000	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion 0000			
Convergence and Stability						

- Convergence: what can be said about the large n behaviour of U_n and the large t behaviour of u(t) in the limit $\Delta t \to 0$?
- Stability: for what sort of restrictions on the time step do numerical methods replicate the large-time dynamical features of the dynamical system?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion			
0000000000	000000000	00000000	0000			
Convergence and Stability						

- Convergence: what can be said about the large n behaviour of U_n and the large t behaviour of u(t) in the limit $\Delta t \to 0$?
- Stability: for what sort of restrictions on the time step do numerical methods replicate the large-time dynamical features of the dynamical system?

How do we address these?

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Treating Numerical	Methods as Dynamical Systems		

One approach is to treat the numerical methods as discrete dynamical systems so that the theory of dynamical systems can be brought to bear on the problem.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Some Definitions			

To get a taste for what this involves we need a few more definitions. . .

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Evolution Semigroup	ŝ		

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Evolution Semigroups	5		

• For a discrete dynamical system the map is

 $S^n: \mathbb{R}^n \to \mathbb{R}^n, \qquad U_0 \mapsto U_n = S^n U_0.$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Evolution Semigroup	ē		

• For a discrete dynamical system the map is

 $S^n: \mathbb{R}^n \to \mathbb{R}^n, \qquad U_0 \mapsto U_n = S^n U_0.$

• For a continuous dynamical system the map is

$$S(t): \mathbb{R}^n \to \mathbb{R}^n, \qquad u_0 \mapsto u(t) = S(t)u_0.$$

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Evolution Semigroup	ē		

• For a discrete dynamical system the map is

 $S^n \colon \mathbb{R}^n \to \mathbb{R}^n, \qquad U_0 \mapsto U_n = S^n U_0.$

• For a continuous dynamical system the map is

 $S(t): \mathbb{R}^n \to \mathbb{R}^n, \qquad u_0 \mapsto u(t) = S(t)u_0.$

The maps $(S^n \text{ and } S(t))$ are called *evolution semigroups*.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Invariant Sets			

With the notion of a semigroup we may give a precise definition of invariant set:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
Invariant Sets			

With the notion of a semigroup we may give a precise definition of invariant set:

• An *invariant set* of a dynamical system is a set $E \subseteq \mathbb{R}^n$ such that $S^n E = E$ or S(t)E = E.

Modeling 0000000000	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion 0000
Invariant Sets			

With the notion of a semigroup we may give a precise definition of invariant set:

• An *invariant set* of a dynamical system is a set $E \subseteq \mathbb{R}^n$ such that $S^n E = E$ or S(t)E = E.

We may see that equilibrium points and periodic solutions are invariant sets since they map onto themselves at time evolves.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		0000000	
ω -limit Sets			

 In particular, the invariant sets we are interested in are the ones that solutions (or sets of solutions) converge to as n,t→∞. These are ω-limit sets.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
ω -limit Sets			

- In particular, the invariant sets we are interested in are the ones that solutions (or sets of solutions) converge to as n,t→∞. These are ω-limit sets.
- Thus, the kind of questions we want to ask is do the ω -limit sets of our numerical method correspond to the ω -limit sets of the dynamical system.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics a	s Dynamics		

• A fruitful way to address this is to show that the semigroup S(t) for our dynamical system ((1) or (2)) when discretized yields a semigroup $S_{\Delta t}^n$ for the numerics.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Treating Numerics as	s Dynamics		

- A fruitful way to address this is to show that the semigroup S(t) for our dynamical system ((1) or (2)) when discretized yields a semigroup Sⁿ_{Δt} for the numerics.
- When it does, then it is possible to prove results concerning the relationship between the invariant sets of S(t) and Sⁿ_{Δt}.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics as	Dynamics		

The kinds of things that can be proved for particular classes of numerical methods are:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics	as Dynamics		

The kinds of things that can be proved for particular classes of numerical methods are:

• conditions under which structural properties, *e.g.* dissipativity or conservativeness, of the vector field *f* are preserved.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics	as Dynamics		

The kinds of things that can be proved for particular classes of numerical methods are:

- conditions under which structural properties, *e.g.* dissipativity or conservativeness, of the vector field *f* are preserved.
- conditions for convergence of the invariant sets of S(t) and $S^n_{\Delta t}, \ e.g.$ equilibriua, periodic solutions, invariant manifolds, etc.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics as	s Dynamics		

Other interesting things that can be proved are results concerning:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics a	s Dynamics		

Other interesting things that can be proved are results concerning:

• the preservation of arbitrary *attracting sets* under discretization. This includes the case of chaotic attractors.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		000000000	
Treating Numerics a	as Dynamics		

Other interesting things that can be proved are results concerning:

- the preservation of arbitrary attracting sets under discretization. This includes the case of chaotic attractors.
- the preservation of dynamical invariants, *e.g.* a Hamilitonian, phase volume, *etc.*, under discretization. This ensures stable numerics for computing integrable systems.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Simple Examples of	Results		

One kind of stability problem for numerical methods is the introduction of spurious fixed points, *i.e.* fixed points of $S^n_{\Delta t}$ that are not fixed points of S(t).

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Simple Examples o	f Results		

One kind of stability problem for numerical methods is the introduction of spurious fixed points, *i.e.* fixed points of $S_{\Delta t}^n$ that are not fixed points of S(t). A couple of simple results that can be proved for Runge-Kutta methods are:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Simple Examples of	Results		

One kind of stability problem for numerical methods is the introduction of spurious fixed points, *i.e.* fixed points of $S_{\Delta t}^n$ that are not fixed points of S(t). A couple of simple results that can be proved for Runge-Kutta methods are:

• any fixed point of S(t) is a fixed point of $S_{\Delta t}^n$;

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
		00000000	
Simple Examples of	Results		

One kind of stability problem for numerical methods is the introduction of spurious fixed points, *i.e.* fixed points of $S_{\Delta t}^n$ that are not fixed points of S(t). A couple of simple results that can be proved for Runge-Kutta methods are:

- any fixed point of S(t) is a fixed point of $S_{\Delta t}^n$; but
- specific conditions for critical values of Δt where spurious fixed points bifurcate from equilibria.

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
			0000
Limitations of Numer	ics		

Take home message:

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
			0000
Limitations of Numer	ics		

Take home message:

 it is important to be aware of the kinds of distortion that discretization can produce when using numerics to study dynamical systems;

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
			0000
Limitations of Nume	ics		

Take home message:

- it is important to be aware of the kinds of distortion that discretization can produce when using numerics to study dynamical systems;
- treating numerics as discrete dynamical systems enables one to determine how to design numerical methods that stably compute continuous dynamical systems of various kinds.

So What About the	Project?		
			0000
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion

So What About the P	roject?		
0000000000	0000000000		0000
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion

• A brief survey of some of the kinds of distortion produced by discretization;

So What About the Project?			
000000000	000000000	00000000	0000
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion

- A brief survey of some of the kinds of distortion produced by discretization;
- Simulations to illustrate the results of theorems;

So What About the Project?				
			0000	
Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion	

- A brief survey of some of the kinds of distortion produced by discretization;
- Simulations to illustrate the results of theorems;
- Discretization of a model of a physical system.

Modeling	Convergence and Stability	Numerical Method
Thanks!		

Thank You!

Conclusion

Modeling	Convergence and Stability	Numerical Methods as Dynamical Systems	Conclusion
			0000
References			

- Hale, J. K. (1992) "Dynamics and Numerics." Pp. 243-253 in D. S. Broomhead and A. Iserles (Ed.), *The Dynamics of Numerics and the Numerics of Dynamics*, Clarendon Press.
- Stuart, A. M. (1994) Numerical Analysis of Dynamical Systems. Acta Numerica, 3, pp. 467-572.
- Stuart, A. M. and Humphries, A. R. (1996) Dynamical Systems and Numerical Analysis. Cambridge University Press.